Maximizing the probability of arriving on time: A practical q-learning method
The stochastic shortest path problem is of crucial importance for the development of sustainable transportation systems. Existing methods based on the probability tail model seek for the path that maximizes the probability of arriving at the destination before a deadline. However, they suffer from l...
محفوظ في:
المؤلفون الرئيسيون: | CAO, Zhiguang, GUO, Hongliang, ZHANG, Jie, OLIEHOEK, Frans, FASTENRATH, Ulrich |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8131 https://ink.library.smu.edu.sg/context/sis_research/article/9134/viewcontent/11170_Article_Text_14698_1_2_20201228.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multiagent-based route guidance for increasing the chance of arrival on time
بواسطة: CAO, Zhiguang, وآخرون
منشور في: (2016) -
Maximizing the probability of arriving on time : a stochastic shortest path problem
بواسطة: Cao, Zhiguang
منشور في: (2017) -
Finding the shortest path in stochastic vehicle routing: A cardinality minimization approach
بواسطة: CAO, Zhiguang, وآخرون
منشور في: (2016) -
Routing multiple vehicles cooperatively: Minimizing road network breakdown probability
بواسطة: GUO Hongliang,, وآخرون
منشور في: (2017) -
A multiagent-based approach for vehicle routing by considering both arriving on time and total travel time
بواسطة: Cao, Zhiguang, وآخرون
منشور في: (2019)