Neighbor-anchoring adversarial graph neural networks
Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations for graph data. While GNNs exhibit strong discriminative power, they often fall short of learning the underlying node distribution for increased robustness. To deal with this, inspi...
محفوظ في:
المؤلفون الرئيسيون: | LIU, Zemin, FANG, Yuan, LIU, Yong, ZHENG, Vincent W. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8200 https://ink.library.smu.edu.sg/context/sis_research/article/9203/viewcontent/TKDE21_NAGNN.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Neighbor-anchoring adversarial graph neural networks
بواسطة: Liu, Zemin, وآخرون
منشور في: (2023) -
Neighbor-anchoring adversarial graph neural networks (extended abstract)
بواسطة: LIU, Zemin, وآخرون
منشور في: (2022) -
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
بواسطة: FENG FULI, وآخرون
منشور في: (2020) -
Augmenting image data using generative adversarial networks (GAN)
بواسطة: Liu, Xinchi
منشور في: (2024) -
Be a cartoonist : editing anime images using generative adversarial network
بواسطة: Koh, Tong Liang
منشور في: (2022)