FoodMask: Real-time food instance counting, segmentation and recognition
Food computing has long been studied and deployed to several applications. Understanding a food image at the instance level, including recognition, counting and segmentation, is essential to quantifying nutrition and calorie consumption. Nevertheless, existing techniques are limited to either catego...
محفوظ في:
المؤلفون الرئيسيون: | NGUYEN, Huu-Thanh, CAO, Yu, NGO, Chong-wah, CHAN, Wing-Kwong |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8321 https://ink.library.smu.edu.sg/context/sis_research/article/9324/viewcontent/FoodMask_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
SibNet: Food instance counting and segmentation
بواسطة: NGUYEN, Huu-Thanh., وآخرون
منشور في: (2022) -
DietLens-eout: Large scale restaurant food photo recognition
بواسطة: WEI, Zhipeng, وآخرون
منشور في: (2019) -
From canteen food to daily meals: generalizing food recognition to more practical scenarios
بواسطة: LIU, Guoshan, وآخرون
منشور في: (2024) -
DietLens-Eout: Large Scale Restaurant Food Photo Recognition
بواسطة: Zhipeng Wei, وآخرون
منشور في: (2020) -
Food photo recognition for dietary tracking: System and experiment
بواسطة: MING, Zhao-Yan, وآخرون
منشور في: (2018)