Pose- and Attribute-consistent Person Image Synthesis

PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failur...

Full description

Saved in:
Bibliographic Details
Main Authors: XU, Cheng, CHEN, Zejun, MAI, Jiajie, XU, Xuemiao, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8369
https://ink.library.smu.edu.sg/context/sis_research/article/9372/viewcontent/Pose__and_Attribute_consistent_Person_Image_Synthesis.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failureinpreservingoriginalsemantics(e.g.,thesameoutfit).Inthisarticle,weexplicitly addressthesetwoproblemsbyproposingaPose-andAttribute-consistentPersonImageSynthesisNetwork (PAC-GAN).Toreduceposeandappearancematchingambiguity,weproposeacomponent-wisetransferring modelconsistingoftwostages.Theformerstagefocusesonlyonsynthesizingtargetposes,whilethelatter renderstargetappearancesbyexplicitlytransferringtheappearanceinformationfromthesourceimageto thetargetimageinacomponent-wisemanner. Inthisway,source-targetmatchingambiguityiseliminated duetothecomponent-wisedisentanglementofposeandappearancesynthesis.Second,tomaintainattribute consistency,werepresenttheinputimageasanattributevectorandimposeahigh-levelsemanticconstraint usingthisvectortoregularizethetargetsynthesis.ExtensiveexperimentalresultsontheDeepFashiondataset demonstratethesuperiorityofourmethodoverthestateoftheart,especiallyformaintainingposeandattributeconsistenciesunderlargeposevariations.