Pose- and Attribute-consistent Person Image Synthesis

PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failur...

Full description

Saved in:
Bibliographic Details
Main Authors: XU, Cheng, CHEN, Zejun, MAI, Jiajie, XU, Xuemiao, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8369
https://ink.library.smu.edu.sg/context/sis_research/article/9372/viewcontent/Pose__and_Attribute_consistent_Person_Image_Synthesis.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-9372
record_format dspace
spelling sg-smu-ink.sis_research-93722023-12-13T02:55:19Z Pose- and Attribute-consistent Person Image Synthesis XU, Cheng CHEN, Zejun MAI, Jiajie XU, Xuemiao HE, Shengfeng PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failureinpreservingoriginalsemantics(e.g.,thesameoutfit).Inthisarticle,weexplicitly addressthesetwoproblemsbyproposingaPose-andAttribute-consistentPersonImageSynthesisNetwork (PAC-GAN).Toreduceposeandappearancematchingambiguity,weproposeacomponent-wisetransferring modelconsistingoftwostages.Theformerstagefocusesonlyonsynthesizingtargetposes,whilethelatter renderstargetappearancesbyexplicitlytransferringtheappearanceinformationfromthesourceimageto thetargetimageinacomponent-wisemanner. Inthisway,source-targetmatchingambiguityiseliminated duetothecomponent-wisedisentanglementofposeandappearancesynthesis.Second,tomaintainattribute consistency,werepresenttheinputimageasanattributevectorandimposeahigh-levelsemanticconstraint usingthisvectortoregularizethetargetsynthesis.ExtensiveexperimentalresultsontheDeepFashiondataset demonstratethesuperiorityofourmethodoverthestateoftheart,especiallyformaintainingposeandattributeconsistenciesunderlargeposevariations. 2023-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/8369 info:doi/10.1145/3554739 https://ink.library.smu.edu.sg/context/sis_research/article/9372/viewcontent/Pose__and_Attribute_consistent_Person_Image_Synthesis.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Computing methodologies Artificial intelligence Computer vision Computer graphics Image manipulation Image processing Artificial Intelligence and Robotics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Computing methodologies
Artificial intelligence
Computer vision
Computer graphics
Image manipulation
Image processing
Artificial Intelligence and Robotics
spellingShingle Computing methodologies
Artificial intelligence
Computer vision
Computer graphics
Image manipulation
Image processing
Artificial Intelligence and Robotics
XU, Cheng
CHEN, Zejun
MAI, Jiajie
XU, Xuemiao
HE, Shengfeng
Pose- and Attribute-consistent Person Image Synthesis
description PersonImageSynthesisaimsattransferringtheappearanceofthesourcepersonimageintoatargetpose. Existingmethods cannot handle largeposevariations and therefore suffer fromtwocritical problems: (1)synthesisdistortionduetotheentanglementofposeandappearanceinformationamongdifferentbody componentsand(2)failureinpreservingoriginalsemantics(e.g.,thesameoutfit).Inthisarticle,weexplicitly addressthesetwoproblemsbyproposingaPose-andAttribute-consistentPersonImageSynthesisNetwork (PAC-GAN).Toreduceposeandappearancematchingambiguity,weproposeacomponent-wisetransferring modelconsistingoftwostages.Theformerstagefocusesonlyonsynthesizingtargetposes,whilethelatter renderstargetappearancesbyexplicitlytransferringtheappearanceinformationfromthesourceimageto thetargetimageinacomponent-wisemanner. Inthisway,source-targetmatchingambiguityiseliminated duetothecomponent-wisedisentanglementofposeandappearancesynthesis.Second,tomaintainattribute consistency,werepresenttheinputimageasanattributevectorandimposeahigh-levelsemanticconstraint usingthisvectortoregularizethetargetsynthesis.ExtensiveexperimentalresultsontheDeepFashiondataset demonstratethesuperiorityofourmethodoverthestateoftheart,especiallyformaintainingposeandattributeconsistenciesunderlargeposevariations.
format text
author XU, Cheng
CHEN, Zejun
MAI, Jiajie
XU, Xuemiao
HE, Shengfeng
author_facet XU, Cheng
CHEN, Zejun
MAI, Jiajie
XU, Xuemiao
HE, Shengfeng
author_sort XU, Cheng
title Pose- and Attribute-consistent Person Image Synthesis
title_short Pose- and Attribute-consistent Person Image Synthesis
title_full Pose- and Attribute-consistent Person Image Synthesis
title_fullStr Pose- and Attribute-consistent Person Image Synthesis
title_full_unstemmed Pose- and Attribute-consistent Person Image Synthesis
title_sort pose- and attribute-consistent person image synthesis
publisher Institutional Knowledge at Singapore Management University
publishDate 2023
url https://ink.library.smu.edu.sg/sis_research/8369
https://ink.library.smu.edu.sg/context/sis_research/article/9372/viewcontent/Pose__and_Attribute_consistent_Person_Image_Synthesis.pdf
_version_ 1787136844193857536