Anomaly detection under distribution shift

Anomaly detection (AD) is a crucial machine learning task that aims to learn patterns from a set of normal training samples to identify abnormal samples in test data. Most existing AD studies assume that the training and test data are drawn from the same data distribution, but the test data can have...

Full description

Saved in:
Bibliographic Details
Main Authors: CAO, Tri, ZHU, Jiawen, PANG, Guansong
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8415
https://ink.library.smu.edu.sg/context/sis_research/article/9418/viewcontent/Cao_Anomaly_Detection_Under_Distribution_Shift_ICCV_2023_paper.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English

Similar Items