Anomaly detection under distribution shift
Anomaly detection (AD) is a crucial machine learning task that aims to learn patterns from a set of normal training samples to identify abnormal samples in test data. Most existing AD studies assume that the training and test data are drawn from the same data distribution, but the test data can have...
Saved in:
Main Authors: | CAO, Tri, ZHU, Jiawen, PANG, Guansong |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8415 https://ink.library.smu.edu.sg/context/sis_research/article/9418/viewcontent/Cao_Anomaly_Detection_Under_Distribution_Shift_ICCV_2023_paper.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Anomaly heterogeneity learning for open-set supervised anomaly detection
由: ZHU, Jiawen, et al.
出版: (2024) -
Cross-domain graph anomaly detection via anomaly-aware contrastive alignment
由: WANG, Qizhou, et al.
出版: (2023) -
Detecting flow anomalies in distributed systems
由: CHUA, Freddy Chong-Tat, et al.
出版: (2014) -
Ensemble-based deep reinforcement learning for vehicle routing problems under distribution shift
由: JIANG, Yuan, et al.
出版: (2023) -
Weakly-supervised deep anomaly detection with pairwise relation learning
由: PANG, Guansong, et al.
出版: (2019)