Where is my spot? Few-shot image generation via latent subspace optimization
Image generation relies on massive training data that can hardly produce diverse images of an unseen category according to a few examples. In this paper, we address this dilemma by projecting sparse few-shot samples into a continuous latent space that can potentially generate infinite unseen samples...
Saved in:
Main Authors: | ZHENG, Chenxi, LIU, Bangzhen, ZHANG, Huaidong, XU, Xuemiao, HE, Shengfeng |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8447 https://ink.library.smu.edu.sg/context/sis_research/article/9450/viewcontent/Zheng_Where_Is_My_Spot_Few_Shot_Image_Generation_via_Latent_Subspace_CVPR_2023_paper.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Learning with unreliability : Fast few-shot voxel radiance fields with relative geometric consistency
由: XU, Yingjie, et al.
出版: (2024) -
Counterfactual zero-shot and open-set visual recognition
由: YUE, Zhongqi, et al.
出版: (2021) -
Cross-domain few-shot segmentation via iterative support-query correspondence mining
由: Nie, Jiahao, et al.
出版: (2024) -
Learning an interpretable stylized subspace for 3D-aware animatable artforms
由: ZHENG, Chenxi, et al.
出版: (2024) -
Beyond textual constraints : Learning novel diffusion conditions with fewer examples
由: YU, Yuyang, et al.
出版: (2024)