Hallucination detection: Robustly discerning reliable answers in Large Language Models
Large language models (LLMs) have gained widespread adoption in various natural language processing tasks, including question answering and dialogue systems. However, a major drawback of LLMs is the issue of hallucination, where they generate unfaithful or inconsistent content that deviates from the...
محفوظ في:
المؤلفون الرئيسيون: | CHEN, Yuyuan, FU, Qiang, YUAN, Yichen, WEN, Zhihao, FAN, Ge, LIU, Dayiheng, ZHANG, Dongmei, LI, Zhixu, XIAO, Yanghua |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8464 https://ink.library.smu.edu.sg/context/sis_research/article/9467/viewcontent/3583780.3614905_pv.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Mitigating fine-grained hallucination by fine-tuning large vision-language models with caption rewrites
بواسطة: WANG, Lei, وآخرون
منشور في: (2024) -
LLM hallucination study
بواسطة: Potdar, Prateek Anish
منشور في: (2025) -
Mitigating style-image hallucination in large vision language models
بواسطة: He, Guoshun
منشور في: (2025) -
More trustworthy generative AI through hallucination reduction
بواسطة: He, Guoshun
منشور في: (2024) -
Reducing LLM hallucinations: exploring the efficacy of temperature adjustment through empirical examination and analysis
بواسطة: Tan, Max Zheyuan
منشور في: (2024)