Pro-Cap: Leveraging a frozen vision-language model for hateful meme detection
Hateful meme detection is a challenging multimodal task that requires comprehension of both vision and language, as well as cross-modal interactions. Recent studies have tried to fine-tune pre-trained vision-language models (PVLMs) for this task. However, with increasing model sizes, it becomes impo...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/8477 https://ink.library.smu.edu.sg/context/sis_research/article/9480/viewcontent/Pro_Cap_pvoa_cc_by.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Hateful meme detection is a challenging multimodal task that requires comprehension of both vision and language, as well as cross-modal interactions. Recent studies have tried to fine-tune pre-trained vision-language models (PVLMs) for this task. However, with increasing model sizes, it becomes important to leverage powerful PVLMs more efficiently, rather than simply fine-tuning them. Recently, researchers have attempted to convert meme images into textual captions and prompt language models for predictions. This approach has shown good performance but suffers from non-informative image captions. Considering the two factors mentioned above, we propose a probing-based captioning approach to leverage PVLMs in a zero-shot visual question answering (VQA) manner. Specifically, we prompt a frozen PVLM by asking hateful content-related questions and use the answers as image captions (which we call Pro-Cap), so that the captions contain information critical for hateful content detection. The good performance of models with Pro-Cap on three benchmarks validates the effectiveness and generalization of the proposed method 1. |
---|