MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN
The development of Internet of Things (IoT) communication technology has accelerated the data transmission between IoT devices, thus facilitating collaborative data processing based on the cloud, such as collaborative deep learning. The collaborative deep learning framework allows local devices to c...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/8556 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-9559 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-95592024-01-18T02:30:03Z MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN CHEN, Zhenzhu WU, Jie FU, Anmin SU, Mang DENG, Robert H. The development of Internet of Things (IoT) communication technology has accelerated the data transmission between IoT devices, thus facilitating collaborative data processing based on the cloud, such as collaborative deep learning. The collaborative deep learning framework allows local devices to cooperate on training models without sharing private data, which resolves the contradiction of the availability and privacy of data. However, the emergence of the Generative Adversarial Network (GAN) attack has shown that poorly protected local data is vulnerable to being learned by adversaries. In this paper, we aim to address the threat GAN attacks pose to collaborative deep learning. We propose a Model-Preserving Collaborative deep Learning Framework, called MP-CLF, which can effectively resist the GAN attack. Based on fully connected neural network learning, MP-CLF employs a matrix blinding technology to break the local modeling of the GAN attack by blinding specific model parameters and trainers’ data, which is easily implementable and has strong security. Besides, MP-CLF builds a user partition model pre-training to improve training quality and strengthen model protection. Using the MNIST dataset and Fashion-MNIST dataset, we experimentally demonstrate that MP-CLF can completely resist the GAN attack with good computational efficiency 2023-06-21T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/8556 info:doi/10.1016/j.knosys.2023.110527 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Attack resistance Blinding Collaborative deep learning GAN attack Model privacy Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Attack resistance Blinding Collaborative deep learning GAN attack Model privacy Information Security |
spellingShingle |
Attack resistance Blinding Collaborative deep learning GAN attack Model privacy Information Security CHEN, Zhenzhu WU, Jie FU, Anmin SU, Mang DENG, Robert H. MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
description |
The development of Internet of Things (IoT) communication technology has accelerated the data transmission between IoT devices, thus facilitating collaborative data processing based on the cloud, such as collaborative deep learning. The collaborative deep learning framework allows local devices to cooperate on training models without sharing private data, which resolves the contradiction of the availability and privacy of data. However, the emergence of the Generative Adversarial Network (GAN) attack has shown that poorly protected local data is vulnerable to being learned by adversaries. In this paper, we aim to address the threat GAN attacks pose to collaborative deep learning. We propose a Model-Preserving Collaborative deep Learning Framework, called MP-CLF, which can effectively resist the GAN attack. Based on fully connected neural network learning, MP-CLF employs a matrix blinding technology to break the local modeling of the GAN attack by blinding specific model parameters and trainers’ data, which is easily implementable and has strong security. Besides, MP-CLF builds a user partition model pre-training to improve training quality and strengthen model protection. Using the MNIST dataset and Fashion-MNIST dataset, we experimentally demonstrate that MP-CLF can completely resist the GAN attack with good computational efficiency |
format |
text |
author |
CHEN, Zhenzhu WU, Jie FU, Anmin SU, Mang DENG, Robert H. |
author_facet |
CHEN, Zhenzhu WU, Jie FU, Anmin SU, Mang DENG, Robert H. |
author_sort |
CHEN, Zhenzhu |
title |
MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
title_short |
MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
title_full |
MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
title_fullStr |
MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
title_full_unstemmed |
MP-CLF: An effective model-preserving collaborative deep learning framework for mitigating data leakage under the GAN |
title_sort |
mp-clf: an effective model-preserving collaborative deep learning framework for mitigating data leakage under the gan |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/sis_research/8556 |
_version_ |
1789483264657850368 |