Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization
We propose and analyze several stochastic gradient algorithms for finding stationary points or local minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization problems. First, we propose a simple proximal stochastic gradient algorithm based on variance reduction c...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/8692 https://ink.library.smu.edu.sg/context/sis_research/article/9695/viewcontent/JMLR22_nonsmooth__1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-9695 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-96952024-03-28T08:43:21Z Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization LI, Zhize LI, Jian We propose and analyze several stochastic gradient algorithms for finding stationary points or local minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization problems. First, we propose a simple proximal stochastic gradient algorithm based on variance reduction called ProxSVRG+. We provide a clean and tight analysis of ProxSVRG+, which shows that it outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of minibatch sizes, hence solves an open problem proposed in Reddi et al. (2016b). Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG (Reddi et al., 2016b) and extends to the online setting by avoiding full gradient computations. Then, we further propose an optimal algorithm, called SSRGD, based on SARAH (Nguyen et al., 2017) and show that SSRGD further improves the gradient complexity of ProxSVRG+ and achieves the optimal upper bound, matching the known lower bound of (Fang et al., 2018; Li et al., 2021). Moreover, we show that both ProxSVRG+ and SSRGD enjoy automatic adaptation with local structure of the objective function such as the Polyak-\L{}ojasiewicz (PL) condition for nonconvex functions in the finite-sum case, i.e., we prove that both of them can automatically switch to faster global linear convergence without any restart performed in prior work ProxSVRG (Reddi et al., 2016b). Finally, we focus on the more challenging problem of finding an $(\epsilon, \delta)$-local minimum instead of just finding an $\epsilon$-approximate (first-order) stationary point (which may be some bad unstable saddle points). We show that SSRGD can find an $(\epsilon, \delta)$-local minimum by simply adding some random perturbations. Our algorithm is almost as simple as its counterpart for finding stationary points, and achieves similar optimal rates. 2022-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/8692 info:doi/10.5555/3586589.3586828 https://ink.library.smu.edu.sg/context/sis_research/article/9695/viewcontent/JMLR22_nonsmooth__1_.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University nonconvex optimization optimal algorithm proximal gradient descent variance reduction local minimum Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
nonconvex optimization optimal algorithm proximal gradient descent variance reduction local minimum Databases and Information Systems |
spellingShingle |
nonconvex optimization optimal algorithm proximal gradient descent variance reduction local minimum Databases and Information Systems LI, Zhize LI, Jian Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
description |
We propose and analyze several stochastic gradient algorithms for finding stationary points or local minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization problems. First, we propose a simple proximal stochastic gradient algorithm based on variance reduction called ProxSVRG+. We provide a clean and tight analysis of ProxSVRG+, which shows that it outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of minibatch sizes, hence solves an open problem proposed in Reddi et al. (2016b). Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG (Reddi et al., 2016b) and extends to the online setting by avoiding full gradient computations. Then, we further propose an optimal algorithm, called SSRGD, based on SARAH (Nguyen et al., 2017) and show that SSRGD further improves the gradient complexity of ProxSVRG+ and achieves the optimal upper bound, matching the known lower bound of (Fang et al., 2018; Li et al., 2021). Moreover, we show that both ProxSVRG+ and SSRGD enjoy automatic adaptation with local structure of the objective function such as the Polyak-\L{}ojasiewicz (PL) condition for nonconvex functions in the finite-sum case, i.e., we prove that both of them can automatically switch to faster global linear convergence without any restart performed in prior work ProxSVRG (Reddi et al., 2016b). Finally, we focus on the more challenging problem of finding an $(\epsilon, \delta)$-local minimum instead of just finding an $\epsilon$-approximate (first-order) stationary point (which may be some bad unstable saddle points). We show that SSRGD can find an $(\epsilon, \delta)$-local minimum by simply adding some random perturbations. Our algorithm is almost as simple as its counterpart for finding stationary points, and achieves similar optimal rates. |
format |
text |
author |
LI, Zhize LI, Jian |
author_facet |
LI, Zhize LI, Jian |
author_sort |
LI, Zhize |
title |
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
title_short |
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
title_full |
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
title_fullStr |
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
title_full_unstemmed |
Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
title_sort |
simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2022 |
url |
https://ink.library.smu.edu.sg/sis_research/8692 https://ink.library.smu.edu.sg/context/sis_research/article/9695/viewcontent/JMLR22_nonsmooth__1_.pdf |
_version_ |
1795302174379474944 |