Simple and optimal stochastic gradient methods for nonsmooth nonconvex optimization
We propose and analyze several stochastic gradient algorithms for finding stationary points or local minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization problems. First, we propose a simple proximal stochastic gradient algorithm based on variance reduction c...
Saved in:
Main Authors: | LI, Zhize, LI, Jian |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8692 https://ink.library.smu.edu.sg/context/sis_research/article/9695/viewcontent/JMLR22_nonsmooth__1_.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
DESTRESS: Computation-optimal and communication-efficient decentralized nonconvex finite-sum optimization
由: LI, Boyue, et al.
出版: (2022) -
A simple proximal stochastic gradient method for nonsmooth nonconvex optimization
由: LI, Zhize, et al.
出版: (2018) -
Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization
由: Tseng, P., et al.
出版: (2014) -
A gradient-free distributed optimization method for convex sum of nonconvex cost functions
由: Pang, Yipeng, et al.
出版: (2023) -
STOCHASTIC BREGMAN GRADIENT-TYPE ALGORITHMS FOR NONCONVEX OPTIMIZATION AND CONVEX-CONCAVE SADDLE POINT PROBLEMS
由: DING KUANGYU
出版: (2023)