Iterative graph self-distillation
Recently, there has been increasing interest in the challenge of how to discriminatively vectorize graphs. To address this, we propose a method called Iterative Graph Self-Distillation (IGSD) which learns graph-level representation in an unsupervised manner through instance discrimination using a se...
محفوظ في:
المؤلفون الرئيسيون: | ZHANG, Hanlin, LIN, Shuai, LIU, Weiyang, ZHOU, Pan, TANG, Jian, LIANG, Xiaodan, XING, Eric |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8992 https://ink.library.smu.edu.sg/context/sis_research/article/9995/viewcontent/2023_TKDE_Self_Distillation.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Prototypical graph contrastive learning
بواسطة: LIN, Shuai, وآخرون
منشور في: (2022) -
Interactive contrastive learning for self-supervised entity alignment
بواسطة: ZENG, Kaisheng, وآخرون
منشور في: (2022) -
MITIGATING FEATURE SUPPRESSION IN CONTRASTIVE LEARNING
بواسطة: ZHANG JIHAI
منشور في: (2024) -
Joint hyperbolic and Euclidean geometry contrastive graph neural networks
بواسطة: XU, Xiaoyu, وآخرون
منشور في: (2022) -
Learning with ℓ1-graph for image analysis
بواسطة: Cheng, B., وآخرون
منشور في: (2014)