Inference for General Parametric Functions in Box-Cox-Type Transformation Models
The authors propose a simple but general method of inference for a parametric function of the Box-Cox-type transformation model. Their approach is built upon the classical normal theory but takes parameter estimation into account. It quickly leads to test statistics and confidence intervals for a li...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2008
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/297 https://ink.library.smu.edu.sg/context/soe_research/article/1296/viewcontent/YangEtAl_CJS_2008at.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | The authors propose a simple but general method of inference for a parametric function of the Box-Cox-type transformation model. Their approach is built upon the classical normal theory but takes parameter estimation into account. It quickly leads to test statistics and confidence intervals for a linear combination of scaled or unscaled regression coefficients, as well as for the survivor function and marginal effects on the median or other quantile functions of an original response. The authors show through simulations that the finite-sample performance of their method is often superior to the delta method, and that their approach is robust to mild departures from normality of error distributions. They illustrate their approach with a numerical example. |
---|