A Corrected Plug-in Method for the Quantile Confidence Interval of a Transformed Regression

In this paper we propose an analytically corrected plug-in method for constructing confidence intervals of the conditional quantiles of a response variable with data transformation. The method can be applied to (i) a general conditional regression quantile, (ii) a general monotonic transformation, a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: YANG, Zhenlin, TSE, Yiu Kuen
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2002
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/697
https://ink.library.smu.edu.sg/context/soe_research/article/1696/viewcontent/Yang_Tse.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper we propose an analytically corrected plug-in method for constructing confidence intervals of the conditional quantiles of a response variable with data transformation. The method can be applied to (i) a general conditional regression quantile, (ii) a general monotonic transformation, and (iii) a transformation model with heteroscedastic errors. Our results extend those in Yang (2002a), in which the median of a response variable under the Box-Cox transformation with homoscedastic errors was considered. A Monte Carlo experiment is conducted to compare the performance of the corrected plug-in method, the plug-in method and the delta method. The corrected plug-in method provides superior results over the other two methods.