Jackknife Model Averaging for Quantile Regressions
In this paper, we consider the problem of frequentist model averaging for quantile regression (QR) when all the M models under investigation are potentially misspecified and the number of parameters in some or all models is diverging with the sample size n. To allow for the dependence between the er...
Saved in:
Main Authors: | LU, Xun, SU, Liangjun |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2014
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/1594 https://ink.library.smu.edu.sg/context/soe_research/article/2593/viewcontent/11_2014.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Jackknife model averaging for quantile regressions
由: LU, Xun, et al.
出版: (2015) -
Extremal quantile regressions for selection models and the black-white wage gap
由: D'HAULTFOEUILLE, Xavier, et al.
出版: (2018) -
Extremal quantile regressions for selection models and the black white wage gap
由: D'HAULTFOEUILLE, Xavier, et al.
出版: (2014) -
Nonparametric Prewhitening Estimators for Conditional Quantiles
由: SU, Liangjun, et al.
出版: (2008) -
Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations
由: JIANG, Liang, et al.
出版: (2021)