A Dynamic Network Perspective on the Latent Group Structure of Cryptocurrencies

In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consisten...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: GUO, Li, TAO, Yubo, HARDLE, Wolfgang Karl
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2018
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/2182
https://ink.library.smu.edu.sg/context/soe_research/article/3178/viewcontent/DynamicNetworkPerspectives_Crytocurrencies_2018_wp.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consistency along the horizons. Applying our new method, we show the return inferred network structure and coin attributions, including algorithms and proof types, jointly determine the market segmentation. Based on the network model, we propose a novel "hard-to-value" measure using the centrality scores. Further analysis reveals that the group with a lower centrality score exhibits stronger short-term return reversals. Cross-sectional return predictability further confirms the economic meanings of our grouping results and reveal important portfolio management implications.