A Dynamic Network Perspective on the Latent Group Structure of Cryptocurrencies
In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consisten...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2182 https://ink.library.smu.edu.sg/context/soe_research/article/3178/viewcontent/DynamicNetworkPerspectives_Crytocurrencies_2018_wp.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform consistency along the horizons. Applying our new method, we show the return inferred network structure and coin attributions, including algorithms and proof types, jointly determine the market segmentation. Based on the network model, we propose a novel "hard-to-value" measure using the centrality scores. Further analysis reveals that the group with a lower centrality score exhibits stronger short-term return reversals. Cross-sectional return predictability further confirms the economic meanings of our grouping results and reveal important portfolio management implications. |
---|