Bubble testing under polynomial trends

This paper develops the asymptotic theory of the least squares estimator of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data is generated from a polynomial trend model in different forms. It is shown that the commonly used right-tailed unit root tests tend to favor...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: WANG, Xiaohu, Jun YU
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2023
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/2639
https://ink.library.smu.edu.sg/context/soe_research/article/3638/viewcontent/NegativeBubble24.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:This paper develops the asymptotic theory of the least squares estimator of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data is generated from a polynomial trend model in different forms. It is shown that the commonly used right-tailed unit root tests tend to favor the explosive alternative. A new procedure, which implements the right-tailed unit root tests in an AR(2) regression, is proposed. It is shown that when the data generating process has a polynomial trend, the test statistics based on the new procedure cannot find evidence of explosiveness. Whereas, when the data generating process is mildly explosive, the new procedure finds evidence of explosiveness. Hence, it enables robust bubble testing under polynomial trends. Empirical application of the proposed procedure using data from the U.S. real estate market reveals some interesting findings. In particular, all the negative bubble episodes flagged by the traditional method are no longer regarded as bubbles by the new procedure