High frequency principal component analysis based on correlation matrix that is robust to jumps, microstructure noise and asynchronous observation times
This paper developed the high frequency estimation for the principal component analysis (PCA) based on correlation matrix. This estimation methodology is robust to jumps, microstructure noise and asynchronous observation times simultaneously, which is enabled by the newly proposed Truncated and Smoo...
Saved in:
主要作者: | CHEN, Dachuan |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/2746 https://ink.library.smu.edu.sg/context/soe_research/article/3745/viewcontent/ssrn_4134047_sv.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Robust jump regressions
由: LI, Jia, et al.
出版: (2017) -
On estimating market microstructure noise variance
由: DONG, Yingjie, et al.
出版: (2017) -
Testing for jumps in noisy high frequency data
由: AIT-SAHALIA, Yacine, et al.
出版: (2012) -
Robust estimation and inference for jumps in noisy high frequency data: A Local-to-Continuity Theory for the pre-averaging method
由: LI, Jia
出版: (2013) -
Principal component analysis for field separation
由: Ton, Tich Ai
出版: (2017)