How to detect linear dependence on the copula level?

In many practical situations, the dependence between the quantities is linear or approximately linear. Knowing that the dependence is linear simplifies computations; so, is is desirable to detect linear dependencies. If we know the joint probability distribution, we can detect linear dependence by c...

Full description

Saved in:
Bibliographic Details
Main Authors: Kreinovich V., Nguyen H.T., Sriboonchitta S.
Format: Conference or Workshop Item
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84897890526&partnerID=40&md5=307da28f38b4f801594171f67d3ebe14
http://cmuir.cmu.ac.th/handle/6653943832/1197
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:In many practical situations, the dependence between the quantities is linear or approximately linear. Knowing that the dependence is linear simplifies computations; so, is is desirable to detect linear dependencies. If we know the joint probability distribution, we can detect linear dependence by computing Pearson's correlation coefficient. In practice, we often have a copula instead of a full distribution; in this case, we face a problem of detecting linear dependence based on the copula. Also, distributions are often heavy-tailed, with infinite variances, in which case Pearson's formulas cannot be applied. In this paper, we show how to modify Pearson's formula so that it can be applied to copulas and to heavy-tailed distributions. © Springer International Publishing Switzerland 2014.