Safety design planning of ground grid for outdoor substations in MEA's power distribution system
This paper analyzes the performance of a ground-ing system made of copper conductors and signicantly influenced by soil resistivity. The grounding performance is evaluated in terms of ground potential rise (GPR), touch voltage and step voltage caused by a short circuit that generates a flow of large...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-80055068645&partnerID=40&md5=82b86932e45cbcfca0a403fe0e1fe49c http://cmuir.cmu.ac.th/handle/6653943832/1500 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-1500 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-15002014-08-29T09:29:23Z Safety design planning of ground grid for outdoor substations in MEA's power distribution system Phayomhom A. Sirisumrannukul S. Kasirawat T. Puttarach A. This paper analyzes the performance of a ground-ing system made of copper conductors and signicantly influenced by soil resistivity. The grounding performance is evaluated in terms of ground potential rise (GPR), touch voltage and step voltage caused by a short circuit that generates a flow of large cur-rents in the aboveground structures and grounding system and dissipates in the soil. These currents may cause damage to substation equipment and may be dangerous to personnel working nearby. Safety design planning for step and touch voltages for the existing fault level and future fault levels are extensively investigated for utility applications where personnel hazards may exist. Modelling and simulation is carried out on the Current Distribution Electro-magnetic interference Grounding and Soil structure (CDEGS) program. The safety design planning is illustrated by a practical case of ground grid design for the 69/12-24 kV, outdoor-type Bangkrachao sub-station of Metropolitan Electricity Authority (MEA) with economic analysis. An effective solution to improve the performance of the substation grounding is also suggested. 2014-08-29T09:29:23Z 2014-08-29T09:29:23Z 2011 Article 16859545 http://www.scopus.com/inward/record.url?eid=2-s2.0-80055068645&partnerID=40&md5=82b86932e45cbcfca0a403fe0e1fe49c http://cmuir.cmu.ac.th/handle/6653943832/1500 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
This paper analyzes the performance of a ground-ing system made of copper conductors and signicantly influenced by soil resistivity. The grounding performance is evaluated in terms of ground potential rise (GPR), touch voltage and step voltage caused by a short circuit that generates a flow of large cur-rents in the aboveground structures and grounding system and dissipates in the soil. These currents may cause damage to substation equipment and may be dangerous to personnel working nearby. Safety design planning for step and touch voltages for the existing fault level and future fault levels are extensively investigated for utility applications where personnel hazards may exist. Modelling and simulation is carried out on the Current Distribution Electro-magnetic interference Grounding and Soil structure (CDEGS) program. The safety design planning is illustrated by a practical case of ground grid design for the 69/12-24 kV, outdoor-type Bangkrachao sub-station of Metropolitan Electricity Authority (MEA) with economic analysis. An effective solution to improve the performance of the substation grounding is also suggested. |
format |
Article |
author |
Phayomhom A. Sirisumrannukul S. Kasirawat T. Puttarach A. |
spellingShingle |
Phayomhom A. Sirisumrannukul S. Kasirawat T. Puttarach A. Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
author_facet |
Phayomhom A. Sirisumrannukul S. Kasirawat T. Puttarach A. |
author_sort |
Phayomhom A. |
title |
Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
title_short |
Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
title_full |
Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
title_fullStr |
Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
title_full_unstemmed |
Safety design planning of ground grid for outdoor substations in MEA's power distribution system |
title_sort |
safety design planning of ground grid for outdoor substations in mea's power distribution system |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80055068645&partnerID=40&md5=82b86932e45cbcfca0a403fe0e1fe49c http://cmuir.cmu.ac.th/handle/6653943832/1500 |
_version_ |
1681419682127544320 |