Achieving k-anonymity for associative classification in incremental-data scenarios

When a data mining model is to be developed, one of the most important issues is preserving the privacy of the input data. In this paper, we address the problem of data transformation to preserve the privacy with regard to a data mining technique, associative classification, in an incremental-data s...

全面介紹

Saved in:
書目詳細資料
Main Authors: Seisungsittisunti B., Natwichai J.
格式: Conference or Workshop Item
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-80655143423&partnerID=40&md5=cdbbf534af0b53f8accf067bf9629cfe
http://cmuir.cmu.ac.th/handle/6653943832/1538
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English