Associative classification rules hiding for privacy preservation
Sensitive patterns could be discovered from the given data when the data are shared between business partners. Such patterns should not be disclosed to the other parties. However, the shared data should be credible and trustworthy for their 'quality'. In this paper, we address a problem of...
Saved in:
Main Authors: | Natwichai J., Sun X., Li X. |
---|---|
格式: | Article |
語言: | English |
出版: |
2014
|
在線閱讀: | http://www.scopus.com/inward/record.url?eid=2-s2.0-79956073972&partnerID=40&md5=bb36d3810623aa32abcd2cac40d50630 http://cmuir.cmu.ac.th/handle/6653943832/1574 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Associative classification rules hiding for privacy preservation
由: Juggapong Natwichai, et al.
出版: (2018) -
A heuristic data reduction approach for associative classification rule hiding
由: Natwichai J., et al.
出版: (2014) -
Privacy preservation for associative classification
由: Harnsamut,N., et al.
出版: (2015) -
Data reduction approach for sensitive associative classification rule hiding
由: Juggapong Natwichai, et al.
出版: (2018) -
Data quality in privacy preservation for associative classification
由: Harnsamut N., et al.
出版: (2014)