Relative contribution of OAT1 and OAT3 transport activities in isolated perfused rabbit renal proximal tubules

The expression of both OAT1 and OAT3 along the isolated rabbit renal proximal tubule (RPT) was determined using RT-PCR. They were found to be very strong in S2 segment and weak in S1 and S3 segments. We further examined the relative transport activity of these transporters in isolated perfused rabbi...

Full description

Saved in:
Bibliographic Details
Main Authors: Lungkaphin A., Lewchalermwongse B., Chatsudthipong V.
Format: In Vitro
Language:English
Published: 2014
Online Access:http://www.ncbi.nlm.nih.gov/pubmed/3502482
http://cmuir.cmu.ac.th/handle/6653943832/3179
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:The expression of both OAT1 and OAT3 along the isolated rabbit renal proximal tubule (RPT) was determined using RT-PCR. They were found to be very strong in S2 segment and weak in S1 and S3 segments. We further examined the relative transport activity of these transporters in isolated perfused rabbit RPT using [(3)H]para-aminohippurate ([(3)H]PAH), and estrone sulfate ([(3)H]ES) as specific substrates for rbOAT1 and rbOAT3, respectively. The transport activity of OAT1 was in the order S2>S1=S3 segments and that of OAT3 was in the order S1=S2>S3 segments. The addition of alpha-ketoglutarate (100 muM) in the bathing medium increased both OAT1 and OAT3 transport activities in all segments of proximal tubule. The kinetics of [(3)H]succinic acid transport, used to measure the activity of sodium dicarboxylate transporter 3 (NaDC3), were examined. The J(max) for succinic acid was in the order S2>S3 and unmeasurable in the S1 segment. Our data indicate that both OAT1 and OAT3 play quantitatively significant roles in the renal transport of organic anions along the proximal tubule but predominately in S2 segment. The relative contribution of both transporters depends on their relative expression levels and may possibly be affected by the activity of NaDC3 in RPT.