Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening

Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. viva...

Full description

Saved in:
Bibliographic Details
Main Authors: Somsak V., Uthaipibull C., Prommana P., Srichairatanakool S., Yuthavong Y., Kamchonwongpaisan S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-80053530568&partnerID=40&md5=bf890731cf169d34109b015b3902fb19
http://cmuir.cmu.ac.th/handle/6653943832/3720
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-3720
record_format dspace
spelling th-cmuir.6653943832-37202014-08-30T02:35:14Z Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening Somsak V. Uthaipibull C. Prommana P. Srichairatanakool S. Yuthavong Y. Kamchonwongpaisan S. Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods. Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results: Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion: With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate transgenic models specific for other targets of interest, thus facilitating the development of anti-P. vivax drugs in general. © 2011 Somsak et al; licensee BioMed Central Ltd. 2014-08-30T02:35:14Z 2014-08-30T02:35:14Z 2011 Article 14752875 10.1186/1475-2875-10-291 http://www.scopus.com/inward/record.url?eid=2-s2.0-80053530568&partnerID=40&md5=bf890731cf169d34109b015b3902fb19 http://cmuir.cmu.ac.th/handle/6653943832/3720 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods. Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results: Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion: With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate transgenic models specific for other targets of interest, thus facilitating the development of anti-P. vivax drugs in general. © 2011 Somsak et al; licensee BioMed Central Ltd.
format Article
author Somsak V.
Uthaipibull C.
Prommana P.
Srichairatanakool S.
Yuthavong Y.
Kamchonwongpaisan S.
spellingShingle Somsak V.
Uthaipibull C.
Prommana P.
Srichairatanakool S.
Yuthavong Y.
Kamchonwongpaisan S.
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
author_facet Somsak V.
Uthaipibull C.
Prommana P.
Srichairatanakool S.
Yuthavong Y.
Kamchonwongpaisan S.
author_sort Somsak V.
title Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
title_short Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
title_full Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
title_fullStr Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
title_full_unstemmed Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
title_sort transgenic plasmodium parasites stably expressing plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-80053530568&partnerID=40&md5=bf890731cf169d34109b015b3902fb19
http://cmuir.cmu.ac.th/handle/6653943832/3720
_version_ 1681420101797019648