DBSMOTE: Density-based synthetic minority over-sampling technique
A dataset exhibits the class imbalance problem when a target class has a very small number of instances relative to other classes. A trivial classifier typically fails to detect a minority class due to its extremely low incidence rate. In this paper, a new over-sampling technique called DBSMOTE is p...
Saved in:
Main Authors: | , , |
---|---|
格式: | Article |
出版: |
Springer Netherlands
2015
|
主題: | |
在線閱讀: | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84862140885&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38631 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |