A measure of mutual complete dependence in discrete variables through subcopula
© 2015. Siburg and Stoimenov [12] gave a measure of mutual complete dependence of continuous variables which is different from Spearman's ρ and Kendall's τ. In this paper, a similar measure of mutual complete dependence is applied to discrete variables. Also two measures for functional rel...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | مقال |
منشور في: |
Elsevier Inc.
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84928201156&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38933 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chiang Mai University |
الملخص: | © 2015. Siburg and Stoimenov [12] gave a measure of mutual complete dependence of continuous variables which is different from Spearman's ρ and Kendall's τ. In this paper, a similar measure of mutual complete dependence is applied to discrete variables. Also two measures for functional relationships, which are not bijection, are investigated. For illustration of our main results, several examples are given. |
---|