The adaptive dynamic clustering neuro-fuzzy system for classification
© Springer-Verlag Berlin Heidelberg 2015. This paper proposes a method of neuro-fuzzy for classification using adaptive dynamic clustering. The method has three parts, the first part is to find the proper number of membership functions by using adaptive dynamic clustering and transform to binary val...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | مقال |
منشور في: |
Springer Verlag
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84923167075&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/39103 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chiang Mai University |
الملخص: | © Springer-Verlag Berlin Heidelberg 2015. This paper proposes a method of neuro-fuzzy for classification using adaptive dynamic clustering. The method has three parts, the first part is to find the proper number of membership functions by using adaptive dynamic clustering and transform to binary value in a second step. The final step is classification part using neural network. Furthermore the weights from the learning process of the neural network are used as feature eliminates to perform the rule extraction. The experiments used dataset form UCI to verify the proposed methodology. The result shows the high performance of the proposed method. |
---|