X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal

© 2017 Taylor & Francis. The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted...

Full description

Saved in:
Bibliographic Details
Main Authors: Chaikaew S., Kanpiengjai A., Intatep J., Unban K., Wongputtisin P., Takata G., Khanongnuch C.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85007309471&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40539
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-40539
record_format dspace
spelling th-cmuir.6653943832-405392017-09-28T04:10:08Z X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal Chaikaew S. Kanpiengjai A. Intatep J. Unban K. Wongputtisin P. Takata G. Khanongnuch C. © 2017 Taylor & Francis. The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted copra meal (DCM). The mutants obtained were screened based on their defective lipase activity together with their β-mannanase production performance. Among 10 selected mutants, the strain M7 was the highest promising mutant regarding the smallest lipase activity (0.05 U/ml) and the retained β-mannanase activity similar to the parental strain (22 U/ml) were detected. The mutant M7 effectively hydrolyzed DCM to MOS with low-degree of polymerization (DP) oligomers including mannotriose (M3), mannotetraose (M4), and mannopentose (M5) as the main products. Although the pattern of DCM hydrolysis products of mutant M7 was distinctly different from wild type, the biochemical and catalytic properties of purified β-mannanase of mutant were similar to those of wild type. Both purified β-mannanases with apparent molecular mass of 38 kDa displayed optimal activity at pH 5–7 and 45–55°C. Co 2+ and Hg 2+ nearly completely inhibited activities of both enzymes, whereas Ba 2+ , Fe 3+ , and 2-mercaptoethanol obviously activated enzyme activities. Both enzymes showed high specificity for locust bean gum, konjac mannan, DCM, and guar gum. Thus, the mutant M7 has a potential for commercial production of high-quality MOS from low-cost DCM for further application in the feed industry. 2017-09-28T04:10:08Z 2017-09-28T04:10:08Z 4 Journal 10826068 2-s2.0-85007309471 10.1080/10826068.2016.1252929 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85007309471&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40539
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2017 Taylor & Francis. The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted copra meal (DCM). The mutants obtained were screened based on their defective lipase activity together with their β-mannanase production performance. Among 10 selected mutants, the strain M7 was the highest promising mutant regarding the smallest lipase activity (0.05 U/ml) and the retained β-mannanase activity similar to the parental strain (22 U/ml) were detected. The mutant M7 effectively hydrolyzed DCM to MOS with low-degree of polymerization (DP) oligomers including mannotriose (M3), mannotetraose (M4), and mannopentose (M5) as the main products. Although the pattern of DCM hydrolysis products of mutant M7 was distinctly different from wild type, the biochemical and catalytic properties of purified β-mannanase of mutant were similar to those of wild type. Both purified β-mannanases with apparent molecular mass of 38 kDa displayed optimal activity at pH 5–7 and 45–55°C. Co 2+ and Hg 2+ nearly completely inhibited activities of both enzymes, whereas Ba 2+ , Fe 3+ , and 2-mercaptoethanol obviously activated enzyme activities. Both enzymes showed high specificity for locust bean gum, konjac mannan, DCM, and guar gum. Thus, the mutant M7 has a potential for commercial production of high-quality MOS from low-cost DCM for further application in the feed industry.
format Journal
author Chaikaew S.
Kanpiengjai A.
Intatep J.
Unban K.
Wongputtisin P.
Takata G.
Khanongnuch C.
spellingShingle Chaikaew S.
Kanpiengjai A.
Intatep J.
Unban K.
Wongputtisin P.
Takata G.
Khanongnuch C.
X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
author_facet Chaikaew S.
Kanpiengjai A.
Intatep J.
Unban K.
Wongputtisin P.
Takata G.
Khanongnuch C.
author_sort Chaikaew S.
title X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
title_short X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
title_full X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
title_fullStr X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
title_full_unstemmed X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal
title_sort x-ray-induced mutation of bacillus sp. mr10 for manno-oligosaccharides production from copra meal
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85007309471&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40539
_version_ 1681421836294815744