Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions

© 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg. Background: P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity. Objective: To ev...

Full description

Saved in:
Bibliographic Details
Main Authors: Wongrattanakamon P., Lee V., Nimmanpipug P., Jiranusornkul S.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988662367&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41472
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-41472
record_format dspace
spelling th-cmuir.6653943832-414722017-09-28T04:21:32Z Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions Wongrattanakamon P. Lee V. Nimmanpipug P. Jiranusornkul S. © 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg. Background: P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity. Objective: To evaluate the important amino acid residues within nucleotide binding domain 1 (NBD1) of P-gp that play a key role in molecular interactions with flavonoids using structure-based pharmacophore model. Methods: In the molecular docking with NBD1 models, a putative binding site of flavonoids was proposed and compared with the site for ATP. The binding modes for ligands were achieved using LigandScout to generate the P-gp–flavonoid pharmacophore models. Results: The binding pocket for flavonoids was investigated and found these inhibitors compete with the ATP for binding site in NBD1 including the NBD1 amino acid residues identified by the in silico techniques to be involved in the hydrogen bonding and van der Waals (hydrophobic) interactions with flavonoids. Conclusion: These flavonoids occupy with the same binding site of ATP in NBD1 proffering that they may act as an ATP competitive inhibitor. 2017-09-28T04:21:31Z 2017-09-28T04:21:31Z 2016-10-01 Journal 16747984 2-s2.0-84988662367 10.1007/s11515-016-1421-3 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988662367&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/41472
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg. Background: P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity. Objective: To evaluate the important amino acid residues within nucleotide binding domain 1 (NBD1) of P-gp that play a key role in molecular interactions with flavonoids using structure-based pharmacophore model. Methods: In the molecular docking with NBD1 models, a putative binding site of flavonoids was proposed and compared with the site for ATP. The binding modes for ligands were achieved using LigandScout to generate the P-gp–flavonoid pharmacophore models. Results: The binding pocket for flavonoids was investigated and found these inhibitors compete with the ATP for binding site in NBD1 including the NBD1 amino acid residues identified by the in silico techniques to be involved in the hydrogen bonding and van der Waals (hydrophobic) interactions with flavonoids. Conclusion: These flavonoids occupy with the same binding site of ATP in NBD1 proffering that they may act as an ATP competitive inhibitor.
format Journal
author Wongrattanakamon P.
Lee V.
Nimmanpipug P.
Jiranusornkul S.
spellingShingle Wongrattanakamon P.
Lee V.
Nimmanpipug P.
Jiranusornkul S.
Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
author_facet Wongrattanakamon P.
Lee V.
Nimmanpipug P.
Jiranusornkul S.
author_sort Wongrattanakamon P.
title Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
title_short Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
title_full Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
title_fullStr Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
title_full_unstemmed Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions
title_sort nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of p-glycoprotein–flavonoid molecular interactions
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988662367&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41472
_version_ 1681422008292737024