Online incremental attribute-based zero-shot learning

The paper presents a new online incremental zero-shot learning method for applications in robotics and mobile communications where attribute labeling is obtained via online interaction with users, and where the potential for inconsistency exists. Unique to most previous offline batch learning method...

Full description

Saved in:
Bibliographic Details
Main Authors: Kankuekul P., Kawewong A., Tangruamsub S., Hasegawa O.
Format: Conference Proceeding
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84866713663&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42757
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-42757
record_format dspace
spelling th-cmuir.6653943832-427572017-09-28T06:38:39Z Online incremental attribute-based zero-shot learning Kankuekul P. Kawewong A. Tangruamsub S. Hasegawa O. The paper presents a new online incremental zero-shot learning method for applications in robotics and mobile communications where attribute labeling is obtained via online interaction with users, and where the potential for inconsistency exists. Unique to most previous offline batch learning methods, the proposed method is based on the indirect-attribute-prediction (IAP) model instead of the direct-attribute-prediction (DAP). Using self-organizing and incremental neural networks (SOINN) as the learning mechanism, our method can learn new attributes and update existing attributes in an online incremental manner while retaining as high accuracy as that of the state-of-the-art offline method. Compared to the offline methods, the computation time has also been reduced by more than 99%. Two experiments evaluated two aspects of the proposed method. First, our method clearly outperforms the previous IAP-based offline method in terms of both time and accuracy, and yield approximately the same accuracy as the DAP-based offline method. Second, the proposed method can deal with situations where object attributes are gradually labeled via interaction with many users and where some of them may be incorrect. This scenario is very important for applications in mobile communications and robotics where some objects and attributes may be initially unknown and must be learnt online. © 2012 IEEE. 2017-09-28T06:38:39Z 2017-09-28T06:38:39Z 2012-10-01 Conference Proceeding 10636919 2-s2.0-84866713663 10.1109/CVPR.2012.6248112 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84866713663&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42757
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description The paper presents a new online incremental zero-shot learning method for applications in robotics and mobile communications where attribute labeling is obtained via online interaction with users, and where the potential for inconsistency exists. Unique to most previous offline batch learning methods, the proposed method is based on the indirect-attribute-prediction (IAP) model instead of the direct-attribute-prediction (DAP). Using self-organizing and incremental neural networks (SOINN) as the learning mechanism, our method can learn new attributes and update existing attributes in an online incremental manner while retaining as high accuracy as that of the state-of-the-art offline method. Compared to the offline methods, the computation time has also been reduced by more than 99%. Two experiments evaluated two aspects of the proposed method. First, our method clearly outperforms the previous IAP-based offline method in terms of both time and accuracy, and yield approximately the same accuracy as the DAP-based offline method. Second, the proposed method can deal with situations where object attributes are gradually labeled via interaction with many users and where some of them may be incorrect. This scenario is very important for applications in mobile communications and robotics where some objects and attributes may be initially unknown and must be learnt online. © 2012 IEEE.
format Conference Proceeding
author Kankuekul P.
Kawewong A.
Tangruamsub S.
Hasegawa O.
spellingShingle Kankuekul P.
Kawewong A.
Tangruamsub S.
Hasegawa O.
Online incremental attribute-based zero-shot learning
author_facet Kankuekul P.
Kawewong A.
Tangruamsub S.
Hasegawa O.
author_sort Kankuekul P.
title Online incremental attribute-based zero-shot learning
title_short Online incremental attribute-based zero-shot learning
title_full Online incremental attribute-based zero-shot learning
title_fullStr Online incremental attribute-based zero-shot learning
title_full_unstemmed Online incremental attribute-based zero-shot learning
title_sort online incremental attribute-based zero-shot learning
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84866713663&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42757
_version_ 1681422249882550272