Prediction of the disulphide bonding state of cysteines in proteins using Conditional Random Fields
The formation of disulphide bonds between cysteines plays a major role in protein folding, structure, function and evolution. Many computational approaches have been used to predict the disulphide bonding state of cysteines. In our work, we developed a novel method based on Conditional Random Fields...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960970337&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49705 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | The formation of disulphide bonds between cysteines plays a major role in protein folding, structure, function and evolution. Many computational approaches have been used to predict the disulphide bonding state of cysteines. In our work, we developed a novel method based on Conditional Random Fields (CRFs) to predict the disulphide bonding state from protein primary sequence, predicted secondary structures and predicted relative solvent accessibilities (all-state information). Our experiments obtain 84% accuracy, 88% precision and 94% recall, using all-state information. However, our results show essentially identical results when using protein sequence and predicted relative solvent accessibilities in the absence of secondary structure. © 2011 Inderscience Enterprises Ltd. |
---|