Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening
Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. viva...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80053530568&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50024 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-50024 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-500242018-09-04T04:25:36Z Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening Voravuth Somsak Chairat Uthaipibull Parichat Prommana Somdet Srichairatanakool Yongyuth Yuthavong Sumalee Kamchonwongpaisan Immunology and Microbiology Medicine Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods. Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results: Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion: With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate transgenic models specific for other targets of interest, thus facilitating the development of anti-P. vivax drugs in general. © 2011 Somsak et al; licensee BioMed Central Ltd. 2018-09-04T04:22:10Z 2018-09-04T04:22:10Z 2011-10-10 Journal 14752875 2-s2.0-80053530568 10.1186/1475-2875-10-291 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80053530568&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50024 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Immunology and Microbiology Medicine |
spellingShingle |
Immunology and Microbiology Medicine Voravuth Somsak Chairat Uthaipibull Parichat Prommana Somdet Srichairatanakool Yongyuth Yuthavong Sumalee Kamchonwongpaisan Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
description |
Background: Plasmodium vivax is the most prevalent cause of human malaria in tropical regions outside the African continent. The lack of a routine continuous in vitro culture of this parasite makes it difficult to develop specific drugs for this disease. To facilitate the development of anti-P. vivax drugs, bacterial and yeast surrogate models expressing the validated P. vivax target dihydrofolate reductase-thymidylate synthase (DHFR-TS) have been generated; however, they can only be used as primary screening models because of significant differences in enzyme expression level and in vivo drug metabolism between the surrogate models and P. vivax parasites. Methods. Plasmodium falciparum and Plasmodium berghei parasites were transfected with DNA constructs bearing P. vivax dhfr-ts pyrimethamine sensitive (wild-type) and pyrimethamine resistant (mutant) alleles. Double crossover homologous recombination was used to replace the endogenous dhfr-ts of P. falciparum and P. berghei parasites with P. vivax homologous genes. The integration of Pvdhfr-ts genes via allelic replacement was verified by Southern analysis and the transgenic parasites lines validated as models by standard drug screening assays. Results: Transgenic P. falciparum and P. berghei lines stably expressing PvDHFR-TS replacing the endogenous parasite DHFR-TS were obtained. Anti-malarial drug screening assays showed that transgenic parasites expressing wild-type PvDHFR-TS were pyrimethamine-sensitive, whereas transgenic parasites expressing mutant PvDHFR-TS were pyrimethamine-resistant. The growth and sensitivity to other types of anti-malarial drugs in the transgenic parasites were otherwise indistinguishable from the parental parasites. Conclusion: With the permanent integration of Pvdhfr-ts gene in the genome, the transgenic Plasmodium lines expressing PvDHFR-TS are genetically stable and will be useful for screening anti-P. vivax compounds targeting PvDHFR-TS. A similar approach could be used to generate transgenic models specific for other targets of interest, thus facilitating the development of anti-P. vivax drugs in general. © 2011 Somsak et al; licensee BioMed Central Ltd. |
format |
Journal |
author |
Voravuth Somsak Chairat Uthaipibull Parichat Prommana Somdet Srichairatanakool Yongyuth Yuthavong Sumalee Kamchonwongpaisan |
author_facet |
Voravuth Somsak Chairat Uthaipibull Parichat Prommana Somdet Srichairatanakool Yongyuth Yuthavong Sumalee Kamchonwongpaisan |
author_sort |
Voravuth Somsak |
title |
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
title_short |
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
title_full |
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
title_fullStr |
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
title_full_unstemmed |
Transgenic Plasmodium parasites stably expressing Plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
title_sort |
transgenic plasmodium parasites stably expressing plasmodium vivax dihydrofolate reductase-thymidylate synthase as in vitro and in vivo models for antifolate screening |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80053530568&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50024 |
_version_ |
1681423515468693504 |