A generalization of Suzuki's lemma

Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0....

Full description

Saved in:
Bibliographic Details
Main Authors: B. Panyanak, A. Cuntavepanit
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University