A generalization of Suzuki's lemma

Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0....

全面介紹

Saved in:
書目詳細資料
Main Authors: B. Panyanak, A. Cuntavepanit
格式: 雜誌
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University