A generalization of Suzuki's lemma
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0....
Saved in:
Main Authors: | , |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |