A generalization of Suzuki's lemma
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0....
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-50116 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-501162018-09-04T04:24:32Z A generalization of Suzuki's lemma B. Panyanak A. Cuntavepanit Mathematics Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. 2018-09-04T04:24:32Z 2018-09-04T04:24:32Z 2011-09-16 Journal 16870409 10853375 2-s2.0-80052686272 10.1155/2011/824718 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics B. Panyanak A. Cuntavepanit A generalization of Suzuki's lemma |
description |
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. |
format |
Journal |
author |
B. Panyanak A. Cuntavepanit |
author_facet |
B. Panyanak A. Cuntavepanit |
author_sort |
B. Panyanak |
title |
A generalization of Suzuki's lemma |
title_short |
A generalization of Suzuki's lemma |
title_full |
A generalization of Suzuki's lemma |
title_fullStr |
A generalization of Suzuki's lemma |
title_full_unstemmed |
A generalization of Suzuki's lemma |
title_sort |
generalization of suzuki's lemma |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 |
_version_ |
1681423531944968192 |