A generalization of Suzuki's lemma

Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0....

Full description

Saved in:
Bibliographic Details
Main Authors: B. Panyanak, A. Cuntavepanit
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-50116
record_format dspace
spelling th-cmuir.6653943832-501162018-09-04T04:24:32Z A generalization of Suzuki's lemma B. Panyanak A. Cuntavepanit Mathematics Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. 2018-09-04T04:24:32Z 2018-09-04T04:24:32Z 2011-09-16 Journal 16870409 10853375 2-s2.0-80052686272 10.1155/2011/824718 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
B. Panyanak
A. Cuntavepanit
A generalization of Suzuki's lemma
description Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit.
format Journal
author B. Panyanak
A. Cuntavepanit
author_facet B. Panyanak
A. Cuntavepanit
author_sort B. Panyanak
title A generalization of Suzuki's lemma
title_short A generalization of Suzuki's lemma
title_full A generalization of Suzuki's lemma
title_fullStr A generalization of Suzuki's lemma
title_full_unstemmed A generalization of Suzuki's lemma
title_sort generalization of suzuki's lemma
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
_version_ 1681423531944968192