The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings
The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS ( X ) and the Jordan-von Neumann constant CNJ ( X ) of a...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-33646362519&partnerID=40&md5=b65f11b216bd77cc91ba0b17a388f50d http://cmuir.cmu.ac.th/handle/6653943832/5091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5091 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-50912014-08-30T02:56:08Z The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings Dhompongsa S. Dominguez Benavides T. Kaewcharoen A. Kaewkhao A. Panyanak B. The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS ( X ) and the Jordan-von Neumann constant CNJ ( X ) of a Banach space X. Using this fact, we prove that if CNJ ( X ) is less than an appropriate positive number, then every multivalued nonexpansive mapping T : E → KC ( E ) has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC ( E ) is the class of all nonempty compact convex subsets of E. © 2005 Elsevier Inc. All rights reserved. 2014-08-30T02:56:08Z 2014-08-30T02:56:08Z 2006 Article 0022247X 10.1016/j.jmaa.2005.07.063 http://www.scopus.com/inward/record.url?eid=2-s2.0-33646362519&partnerID=40&md5=b65f11b216bd77cc91ba0b17a388f50d http://cmuir.cmu.ac.th/handle/6653943832/5091 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS ( X ) and the Jordan-von Neumann constant CNJ ( X ) of a Banach space X. Using this fact, we prove that if CNJ ( X ) is less than an appropriate positive number, then every multivalued nonexpansive mapping T : E → KC ( E ) has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC ( E ) is the class of all nonempty compact convex subsets of E. © 2005 Elsevier Inc. All rights reserved. |
format |
Article |
author |
Dhompongsa S. Dominguez Benavides T. Kaewcharoen A. Kaewkhao A. Panyanak B. |
spellingShingle |
Dhompongsa S. Dominguez Benavides T. Kaewcharoen A. Kaewkhao A. Panyanak B. The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
author_facet |
Dhompongsa S. Dominguez Benavides T. Kaewcharoen A. Kaewkhao A. Panyanak B. |
author_sort |
Dhompongsa S. |
title |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
title_short |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
title_full |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
title_fullStr |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
title_full_unstemmed |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings |
title_sort |
jordan-von neumann constants and fixed points for multivalued nonexpansive mappings |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646362519&partnerID=40&md5=b65f11b216bd77cc91ba0b17a388f50d http://cmuir.cmu.ac.th/handle/6653943832/5091 |
_version_ |
1681420359914487808 |