Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts
Contraction of intestinal myofibroblasts (IMF) contributes to the development of strictures and fistulas seen in inflammatory bowel disease, but the mechanisms that regulate tension within these cells are poorly understood. In this study we investigated the role of nitric oxide (NO) signaling in C-t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878145650&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52235 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-52235 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-522352018-09-04T09:33:31Z Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts Yishi Chen Taned Chitapanarux Jianfeng Wu Russell K. Soon Andrew C. Melton Hal F. Yee Biochemistry, Genetics and Molecular Biology Medicine Contraction of intestinal myofibroblasts (IMF) contributes to the development of strictures and fistulas seen in inflammatory bowel disease, but the mechanisms that regulate tension within these cells are poorly understood. In this study we investigated the role of nitric oxide (NO) signaling in C-type natriuretic peptide (CNP)-induced relaxation of IMF. We found that treatment with ODQ, a soluble guanylyl cyclase (sGC) inhibitor, or NG-nitro-L-arginine (L-NNA) or NG-monomethyl-L-arginine (L-NMMA), inhibitors of NO production, all impaired the relaxation of human and mouse IMF in response to CNP. ODQ, L-NNA, and L-NMMA also prevented CNP-induced elevations in cGMP concentrations, and L-NNA or L-NMMA blocked CNP-induced decreases in myosin light phosphorylation. IMF isolated from transgenic mice deficient in inducible nitric oxide synthase (iNOS) had reduced relaxation responses to CNP compared with IMF from control mice and were insensitive to the effects of ODQ, L-NNA, and L-NMMA on CNP treatment. Together these data indicate that stimulation of sGC though NO produced by iNOS activation is required for maximal CNP-induced relaxation in IMF. © 2013 the American Physiological Society. 2018-09-04T09:22:32Z 2018-09-04T09:22:32Z 2013-06-07 Journal 15221547 01931857 2-s2.0-84878145650 10.1152/ajpgi.00214.2012 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878145650&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52235 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Medicine |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Medicine Yishi Chen Taned Chitapanarux Jianfeng Wu Russell K. Soon Andrew C. Melton Hal F. Yee Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
description |
Contraction of intestinal myofibroblasts (IMF) contributes to the development of strictures and fistulas seen in inflammatory bowel disease, but the mechanisms that regulate tension within these cells are poorly understood. In this study we investigated the role of nitric oxide (NO) signaling in C-type natriuretic peptide (CNP)-induced relaxation of IMF. We found that treatment with ODQ, a soluble guanylyl cyclase (sGC) inhibitor, or NG-nitro-L-arginine (L-NNA) or NG-monomethyl-L-arginine (L-NMMA), inhibitors of NO production, all impaired the relaxation of human and mouse IMF in response to CNP. ODQ, L-NNA, and L-NMMA also prevented CNP-induced elevations in cGMP concentrations, and L-NNA or L-NMMA blocked CNP-induced decreases in myosin light phosphorylation. IMF isolated from transgenic mice deficient in inducible nitric oxide synthase (iNOS) had reduced relaxation responses to CNP compared with IMF from control mice and were insensitive to the effects of ODQ, L-NNA, and L-NMMA on CNP treatment. Together these data indicate that stimulation of sGC though NO produced by iNOS activation is required for maximal CNP-induced relaxation in IMF. © 2013 the American Physiological Society. |
format |
Journal |
author |
Yishi Chen Taned Chitapanarux Jianfeng Wu Russell K. Soon Andrew C. Melton Hal F. Yee |
author_facet |
Yishi Chen Taned Chitapanarux Jianfeng Wu Russell K. Soon Andrew C. Melton Hal F. Yee |
author_sort |
Yishi Chen |
title |
Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
title_short |
Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
title_full |
Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
title_fullStr |
Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
title_full_unstemmed |
Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts |
title_sort |
inducible nos mediates cnp-induced relaxation of intestinal myofibroblasts |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878145650&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52235 |
_version_ |
1681423914049208320 |