Safe level graph for synthetic minority over-sampling techniques

In the class imbalance problem, most existent classifiers which are designed by the distribution of balance datasets fail to recognize minority classes since a large number of negative instances can dominate a few positive instances. Borderline-SMOTE and Safe-Level-SMOTE are over-sampling techniques...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chumphol Bunkhumpornpat, Sitthichoke Subpaiboonkit
格式: Conference Proceeding
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84891076473&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52410
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University