The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand
Hyperthermophilic community diversity was assessed in hot-spring streamers along gradients of temperature, pH and sulphide in northern Thailand. A hierarchical sampling design was employed to obtain biomass for culture-independent estimates of 16S rRNA gene-defined prokaryotic diversity. All springs...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-34249095755&partnerID=40&md5=551a1fec37a61de06675920006577922 http://cmuir.cmu.ac.th/handle/6653943832/5251 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5251 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-52512014-08-30T02:56:19Z The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand Purcell D. Sompong U. Yim L.C. Barraclough T.G. Peerapornpisal Y. Pointing S.B. Hyperthermophilic community diversity was assessed in hot-spring streamers along gradients of temperature, pH and sulphide in northern Thailand. A hierarchical sampling design was employed to obtain biomass for culture-independent estimates of 16S rRNA gene-defined prokaryotic diversity. All springs supported several archaeal and bacterial phylotypes, including novel phylotypes that expand the known phylogenetic diversity of terrestrial hyperthermophiles. Diversity appeared significantly greater than that observed for several other geographic locations. Phylotypes belonging to the Aquificales were ubiquitous, further supporting the hypothesis that these chemolithoautotrophs are key members of all hyperthermophilic communities. The chemoorganotrophic genus Thermus was also represented by phylotypes in all springs. Other bacterial taxa represented by environmental sequences included Bacillus, Thermotoga and various unidentified Alphaproteobacteria and Betaproteobacteria. Archaeal phylotypes included the Crenarchaea Desulfurococcus, Pyrobaculum, plus several unidentified hyperthermophilic lineages. A Methanothermococcus-like Euryarchaeon was also identified, with this genus not previously known from streamer communities. A multivariate approach to the analysis of biotic and abiotic data revealed that diversity patterns were best explained by a combination of temperature and sulphide rather than by any other abiotic variable either individually or in combination. © 2007 Federation of European Microbiological Societies. 2014-08-30T02:56:19Z 2014-08-30T02:56:19Z 2007 Article 01686496 10.1111/j.1574-6941.2007.00302.x 17386034 FMECE http://www.scopus.com/inward/record.url?eid=2-s2.0-34249095755&partnerID=40&md5=551a1fec37a61de06675920006577922 http://cmuir.cmu.ac.th/handle/6653943832/5251 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
Hyperthermophilic community diversity was assessed in hot-spring streamers along gradients of temperature, pH and sulphide in northern Thailand. A hierarchical sampling design was employed to obtain biomass for culture-independent estimates of 16S rRNA gene-defined prokaryotic diversity. All springs supported several archaeal and bacterial phylotypes, including novel phylotypes that expand the known phylogenetic diversity of terrestrial hyperthermophiles. Diversity appeared significantly greater than that observed for several other geographic locations. Phylotypes belonging to the Aquificales were ubiquitous, further supporting the hypothesis that these chemolithoautotrophs are key members of all hyperthermophilic communities. The chemoorganotrophic genus Thermus was also represented by phylotypes in all springs. Other bacterial taxa represented by environmental sequences included Bacillus, Thermotoga and various unidentified Alphaproteobacteria and Betaproteobacteria. Archaeal phylotypes included the Crenarchaea Desulfurococcus, Pyrobaculum, plus several unidentified hyperthermophilic lineages. A Methanothermococcus-like Euryarchaeon was also identified, with this genus not previously known from streamer communities. A multivariate approach to the analysis of biotic and abiotic data revealed that diversity patterns were best explained by a combination of temperature and sulphide rather than by any other abiotic variable either individually or in combination. © 2007 Federation of European Microbiological Societies. |
format |
Article |
author |
Purcell D. Sompong U. Yim L.C. Barraclough T.G. Peerapornpisal Y. Pointing S.B. |
spellingShingle |
Purcell D. Sompong U. Yim L.C. Barraclough T.G. Peerapornpisal Y. Pointing S.B. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
author_facet |
Purcell D. Sompong U. Yim L.C. Barraclough T.G. Peerapornpisal Y. Pointing S.B. |
author_sort |
Purcell D. |
title |
The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
title_short |
The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
title_full |
The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
title_fullStr |
The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
title_full_unstemmed |
The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand |
title_sort |
effects of temperature, ph and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern thailand |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-34249095755&partnerID=40&md5=551a1fec37a61de06675920006577922 http://cmuir.cmu.ac.th/handle/6653943832/5251 |
_version_ |
1681420389909004288 |