Regularity in semigroups of transformations with invariant sets

Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanida Choomanee, Preeyanuch Honyam, Jintana Sanwong
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd.