Regularity in semigroups of transformations with invariant sets

Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanida Choomanee, Preeyanuch Honyam, Jintana Sanwong
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-52745
record_format dspace
spelling th-cmuir.6653943832-527452018-09-04T09:31:24Z Regularity in semigroups of transformations with invariant sets Wanida Choomanee Preeyanuch Honyam Jintana Sanwong Mathematics Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd. 2018-09-04T09:31:24Z 2018-09-04T09:31:24Z 2013-08-30 Journal 13143395 13118080 2-s2.0-84882965960 10.12732/ijpam.v87i1.9 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
Regularity in semigroups of transformations with invariant sets
description Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd.
format Journal
author Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
author_facet Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
author_sort Wanida Choomanee
title Regularity in semigroups of transformations with invariant sets
title_short Regularity in semigroups of transformations with invariant sets
title_full Regularity in semigroups of transformations with invariant sets
title_fullStr Regularity in semigroups of transformations with invariant sets
title_full_unstemmed Regularity in semigroups of transformations with invariant sets
title_sort regularity in semigroups of transformations with invariant sets
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52745
_version_ 1681424007221477376