Saliency-weighted holistic scene text recognition for unseen place categorization

An improvement in framework for unseen place categorization using scene text is proposed. Category score calculation using visual saliency weighting method is proposed to cope with problem of different importance of word locations on scene images. Additionally, a HOG feature extraction using sliding...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Phawis Thammasorn, Karn Patanukhom, Rapeeporn Pimup
التنسيق: وقائع المؤتمر
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904543396&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53421
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Chiang Mai University
الوصف
الملخص:An improvement in framework for unseen place categorization using scene text is proposed. Category score calculation using visual saliency weighting method is proposed to cope with problem of different importance of word locations on scene images. Additionally, a HOG feature extraction using sliding window is proposed to obtain better holistic word recognition on scene images. As the result, the proposed method outperforms PHOG baseline in unseen place categorization with greater than 10 % improvement in the accuracy. © 2014 IEEE.