Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites

Lead zirconate titanate (PZT)-Portland cement (PC) composites were produced and successfully poled at different poling field and time. The effect of polarization on the microstructure and piezoelectric properties were then investigated. It was found that, at a fixed poling field up to 2 kV/mm, the p...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chaipanich A., Jaitanong N.
格式: Conference or Workshop Item
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-62949155031&partnerID=40&md5=9f307e8e96a068c13fc28f8a6ba845af
http://cmuir.cmu.ac.th/handle/6653943832/5431
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:Lead zirconate titanate (PZT)-Portland cement (PC) composites were produced and successfully poled at different poling field and time. The effect of polarization on the microstructure and piezoelectric properties were then investigated. It was found that, at a fixed poling field up to 2 kV/mm, the piezoelectric coefficient (d33) was found to increase with poling time. The optimum poling time was found at 45 minutes where d33 value is 42 pC/N. The optimum and most practical poling field found for the composite was at 2 kV/mm. Lower poling field would give the composite lower piezoelectricity and poling field that is too high would result to breakdown of samples. Therefore, from these results, a poling field of 2 kV/mm at 45 minutes would be the ideal polarization condition used in poling PZT-PC composites. © 2008 Trans Tech Publications, Switzerland.