Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection

During infection, the capsid (C) protein of many flaviviruses localizes to the nuclei and nucleoli of several infected cell lines; the underlying basis and significance of C protein nuclear localization remain poorly understood. In this study, double alanine-substitution mutations were introduced in...

Full description

Saved in:
Bibliographic Details
Main Authors: Sutha Sangiambut, Poonsook Keelapang, John Aaskov, Chunya Puttikhunt, Watchara Kasinrerk, Prida Malasit, Nopporn Sittisombut
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=44649173963&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60479
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-60479
record_format dspace
spelling th-cmuir.6653943832-604792018-09-10T03:43:30Z Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection Sutha Sangiambut Poonsook Keelapang John Aaskov Chunya Puttikhunt Watchara Kasinrerk Prida Malasit Nopporn Sittisombut Immunology and Microbiology During infection, the capsid (C) protein of many flaviviruses localizes to the nuclei and nucleoli of several infected cell lines; the underlying basis and significance of C protein nuclear localization remain poorly understood. In this study, double alanine-substitution mutations were introduced into three previously proposed nuclear-localization signals (at positions 6-9, 73-76 and 85-100) of dengue virus C protein, and four viable mutants, c(K6A,K7A), c(K73A,K74A), c(R85A,K86A) and c(R97A,R98A), were generated in a mosquito cell line in which C protein nuclear localization was rarely observed. Indirect immunofluorescence analysis revealed that, whilst C protein was present in the nuclei of PS and Vero cells throughout infection with a dengue serotype 2 parent virus, the substitution mutations in c(K73A,K74A) and c(R85A,K86A) resulted in an elimination of nuclear localization in PS cells and marked reduction in Vero cells. Mutants c(K6A,K7A) and c(R97A,R98A) exhibited reduced nuclear localization at the late period of infection in PS cells only. All four mutants displayed reduced replication in PS, Vero and C6/36 cells, but there was a lack of correlation between nuclear localization and viral growth properties. Distinct dibasic residues within dengue virus C protein, many of which were located on the solvent-exposed side of the C protein homodimer, contribute to its ability to localize to nuclei during virus infection. © 2008 SGM. 2018-09-10T03:43:30Z 2018-09-10T03:43:30Z 2008-05-01 Journal 00221317 2-s2.0-44649173963 10.1099/vir.0.83264-0 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=44649173963&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60479
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Immunology and Microbiology
spellingShingle Immunology and Microbiology
Sutha Sangiambut
Poonsook Keelapang
John Aaskov
Chunya Puttikhunt
Watchara Kasinrerk
Prida Malasit
Nopporn Sittisombut
Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
description During infection, the capsid (C) protein of many flaviviruses localizes to the nuclei and nucleoli of several infected cell lines; the underlying basis and significance of C protein nuclear localization remain poorly understood. In this study, double alanine-substitution mutations were introduced into three previously proposed nuclear-localization signals (at positions 6-9, 73-76 and 85-100) of dengue virus C protein, and four viable mutants, c(K6A,K7A), c(K73A,K74A), c(R85A,K86A) and c(R97A,R98A), were generated in a mosquito cell line in which C protein nuclear localization was rarely observed. Indirect immunofluorescence analysis revealed that, whilst C protein was present in the nuclei of PS and Vero cells throughout infection with a dengue serotype 2 parent virus, the substitution mutations in c(K73A,K74A) and c(R85A,K86A) resulted in an elimination of nuclear localization in PS cells and marked reduction in Vero cells. Mutants c(K6A,K7A) and c(R97A,R98A) exhibited reduced nuclear localization at the late period of infection in PS cells only. All four mutants displayed reduced replication in PS, Vero and C6/36 cells, but there was a lack of correlation between nuclear localization and viral growth properties. Distinct dibasic residues within dengue virus C protein, many of which were located on the solvent-exposed side of the C protein homodimer, contribute to its ability to localize to nuclei during virus infection. © 2008 SGM.
format Journal
author Sutha Sangiambut
Poonsook Keelapang
John Aaskov
Chunya Puttikhunt
Watchara Kasinrerk
Prida Malasit
Nopporn Sittisombut
author_facet Sutha Sangiambut
Poonsook Keelapang
John Aaskov
Chunya Puttikhunt
Watchara Kasinrerk
Prida Malasit
Nopporn Sittisombut
author_sort Sutha Sangiambut
title Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
title_short Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
title_full Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
title_fullStr Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
title_full_unstemmed Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
title_sort multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=44649173963&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60479
_version_ 1681425443401498624