TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation

In this work, we develop TiO2 based nanocrystalline thin films prepared by ion-assisted ebeam evaporation process. N-type and p-type TiO 2 gassensing layers have been deposited by doping with various metal oxide materials including WO3, MoO3, and NiOx. Structural and morphological characterization b...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Wisitsoraat, E. Comini, G. Sberveglieri, W. Wlodarski, A. Tuantranont
Format: Conference Proceeding
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548130037&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60983
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-60983
record_format dspace
spelling th-cmuir.6653943832-609832018-09-10T04:03:52Z TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation A. Wisitsoraat E. Comini G. Sberveglieri W. Wlodarski A. Tuantranont Computer Science Engineering In this work, we develop TiO2 based nanocrystalline thin films prepared by ion-assisted ebeam evaporation process. N-type and p-type TiO 2 gassensing layers have been deposited by doping with various metal oxide materials including WO3, MoO3, and NiOx. Structural and morphological characterization by means of AFM, SEM, and XRD reveal the thin film is nanocrystalline structure with fine grain of 10-30 nm. NiOx doping with sufficiently high concentration has proven to produce p-type semiconducting thin film while WO3 and MoO3 doping results in typical n-type metal oxide semiconductor. The gas-sensing sensitivity, selectivity, and minimum detectable concentration can be effectively controlled by different dopants and doping concentrations. WO3 doped TiO 2 thin film showed high sensitivity towards NO2 acetone and ethylene at lower working temperature. In addition, TiO2-MO 3 material demonstrated good sensitivity towards CO. While p-type NiOx doped TiO2 structure show high sensitivity toward ethanol and acetone with distinct behaviors compared to other n-type TiO2 thin films. © 2007 IEEE. 2018-09-10T04:02:25Z 2018-09-10T04:02:25Z 2007-08-28 Conference Proceeding 2-s2.0-34548130037 10.1109/NEMS.2007.352241 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548130037&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/60983
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Computer Science
Engineering
spellingShingle Computer Science
Engineering
A. Wisitsoraat
E. Comini
G. Sberveglieri
W. Wlodarski
A. Tuantranont
TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
description In this work, we develop TiO2 based nanocrystalline thin films prepared by ion-assisted ebeam evaporation process. N-type and p-type TiO 2 gassensing layers have been deposited by doping with various metal oxide materials including WO3, MoO3, and NiOx. Structural and morphological characterization by means of AFM, SEM, and XRD reveal the thin film is nanocrystalline structure with fine grain of 10-30 nm. NiOx doping with sufficiently high concentration has proven to produce p-type semiconducting thin film while WO3 and MoO3 doping results in typical n-type metal oxide semiconductor. The gas-sensing sensitivity, selectivity, and minimum detectable concentration can be effectively controlled by different dopants and doping concentrations. WO3 doped TiO 2 thin film showed high sensitivity towards NO2 acetone and ethylene at lower working temperature. In addition, TiO2-MO 3 material demonstrated good sensitivity towards CO. While p-type NiOx doped TiO2 structure show high sensitivity toward ethanol and acetone with distinct behaviors compared to other n-type TiO2 thin films. © 2007 IEEE.
format Conference Proceeding
author A. Wisitsoraat
E. Comini
G. Sberveglieri
W. Wlodarski
A. Tuantranont
author_facet A. Wisitsoraat
E. Comini
G. Sberveglieri
W. Wlodarski
A. Tuantranont
author_sort A. Wisitsoraat
title TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
title_short TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
title_full TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
title_fullStr TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
title_full_unstemmed TiO<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
title_sort tio<inf>2</inf> based nanocrystalline thin film gas sensors prepared by ion-assisted electron beam evaporation
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548130037&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60983
_version_ 1681425536689111040