Effects of calcination conditions on phase formation and particle size of indium niobate nanopowders synthesized by the solid-state reaction
A wolframite-type phase of indium niobate, InNbO4, has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The formation of the InNbO4phase in the calcined powders has been investigated as a function of calcination conditions by TG-DTA and XRD techniques. Morphology, part...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34147191945&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/61086 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | A wolframite-type phase of indium niobate, InNbO4, has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The formation of the InNbO4phase in the calcined powders has been investigated as a function of calcination conditions by TG-DTA and XRD techniques. Morphology, particle size and chemical composition have been determined via a combination of SEM and EDX techniques. It has been found that single-phase InNbO4powders have been obtained successfully at the calcination condition of 950 °C for 2 h with heating/cooling rates of 30 °C/min. Higher temperatures and longer dwell times clearly favoured particle growth and the formation of large and hard agglomerates. © 2006 Elsevier B.V. All rights reserved. |
---|