Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus
© 2018, The Author(s), under exclusive licence to Springer Nature America, Inc. Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary hetero...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055039332&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62740 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-62740 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-627402018-11-29T07:50:11Z Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus Max Renner Aleksandra Flanagan Wanwisa Dejnirattisai Chunya Puttikhunt Watchara Kasinrerk Piyada Supasa Wiyada Wongwiwat Kriangkrai Chawansuntati Thaneeya Duangchinda Alison Cowper Claire M. Midgley Prida Malasit Juha T. Huiskonen Juthathip Mongkolsapaya Gavin R. Screaton Jonathan M. Grimes Immunology and Microbiology Medicine © 2018, The Author(s), under exclusive licence to Springer Nature America, Inc. Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided. 2018-11-29T07:44:50Z 2018-11-29T07:44:50Z 2018-11-01 Journal 15292916 15292908 2-s2.0-85055039332 10.1038/s41590-018-0227-7 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055039332&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62740 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Immunology and Microbiology Medicine |
spellingShingle |
Immunology and Microbiology Medicine Max Renner Aleksandra Flanagan Wanwisa Dejnirattisai Chunya Puttikhunt Watchara Kasinrerk Piyada Supasa Wiyada Wongwiwat Kriangkrai Chawansuntati Thaneeya Duangchinda Alison Cowper Claire M. Midgley Prida Malasit Juha T. Huiskonen Juthathip Mongkolsapaya Gavin R. Screaton Jonathan M. Grimes Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
description |
© 2018, The Author(s), under exclusive licence to Springer Nature America, Inc. Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided. |
format |
Journal |
author |
Max Renner Aleksandra Flanagan Wanwisa Dejnirattisai Chunya Puttikhunt Watchara Kasinrerk Piyada Supasa Wiyada Wongwiwat Kriangkrai Chawansuntati Thaneeya Duangchinda Alison Cowper Claire M. Midgley Prida Malasit Juha T. Huiskonen Juthathip Mongkolsapaya Gavin R. Screaton Jonathan M. Grimes |
author_facet |
Max Renner Aleksandra Flanagan Wanwisa Dejnirattisai Chunya Puttikhunt Watchara Kasinrerk Piyada Supasa Wiyada Wongwiwat Kriangkrai Chawansuntati Thaneeya Duangchinda Alison Cowper Claire M. Midgley Prida Malasit Juha T. Huiskonen Juthathip Mongkolsapaya Gavin R. Screaton Jonathan M. Grimes |
author_sort |
Max Renner |
title |
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
title_short |
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
title_full |
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
title_fullStr |
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
title_full_unstemmed |
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
title_sort |
characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055039332&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/62740 |
_version_ |
1681425863371915264 |