Blazeispirol A, a Chemotaxonomic Marker from Mycelia of the Medicinal Mushroom Agaricus subrufescens

Agaricus subrufescens (almond mushroom) was first collected in America, but has been cultivated worldwide due to its medicinal properties. The potential health promoting benefits of A. subrufescens have been emphasized in several reports and include tumor growth reduction, antimicrobial, immunostimu...

Full description

Saved in:
Bibliographic Details
Main Authors: Naritsada Thongklang, Benjarong Thongbai, Sunita Chamyuang, Philippe Callac, Ekachai Chukeatirote, Kevin D. Hyde, Kathrin Wittstein, Marc Stadler
Format: บทความวารสาร
Language:English
Published: Science Faculty of Chiang Mai University 2019
Online Access:http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=8005
http://cmuir.cmu.ac.th/jspui/handle/6653943832/63858
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:Agaricus subrufescens (almond mushroom) was first collected in America, but has been cultivated worldwide due to its medicinal properties. The potential health promoting benefits of A. subrufescens have been emphasized in several reports and include tumor growth reduction, antimicrobial, immunostimulatory and anti-allergy effects. A unique class of spiro-triterpenoids named blazeispirols was found in the cultured mycelia. Recently, it was found that blazeispirols are highly selective agonists of LXR receptor alpha and extracts from the mycelia of A. subrufescens accordingly even showed cholesterol-lowering activities in vivo in an animal model. Preliminary results on the distribution of blazeispirols furthermore suggested that their occurrence is restricted to A. subrufescens. The objective of our study was to establish blazeispirol production in novel, parental and hybrid strains from various isolates of A. subrufescens originating from Brazil, France and Thailand. Eight strains of A. subrufescens were investigated by HPLC-MS after fermentation in ZM/2, YM 6.3 and SYM broth media. All strains produced blazeispirols in large quantities in ZM/2 medium, confirming that the major component of this complex, blazeispirol A, does not only constitute a novel pharmacological lead compound, but is also a phylogenetic and chemotaxonomic marker for A. subrufescens and even all hybrid strains retained production of the compound. The production of blazeispirol A by fermentation of A. subrufescens, however, is rather slow, hence, for a sustainable production of blazeispirols the fermentation process needs to be further optimised.