The particulate matter concentration spatial prediction using interpolation techniques with machine learning
© 2019 IEEE. The air pollution problem have become the major global environmental problem. It also impacts to health, economic, traffic, and tourism of the nation. The air quality monitoring stations have been applied to measure the air quality factors in their surrounding area. However, the number...
محفوظ في:
المؤلفون الرئيسيون: | Pattaraporn Chuanchai, Paskorn Champrasert, Kitimapond Rattanadoung |
---|---|
التنسيق: | وقائع المؤتمر |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073229398&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67724 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
The emotional state classification using physiological signal interpretation framework
بواسطة: Kitimapond Rattanadoung, وآخرون
منشور في: (2018) -
Prediction of particulate matter concentration in air using data driven machine learning approach
بواسطة: Yang, Peishi
منشور في: (2024) -
Augmented sensors for particulate matter concentration prediction using supervised learning models
بواسطة: Chadaphim Photphanloet
منشور في: (2019) -
Probabilistic optimal interpolation for data assimilation between machine learning model predictions and real time observations
بواسطة: Wei, Yuying, وآخرون
منشور في: (2023) -
Concentrations and elemental analysis of airborne particulate matter in Chiang Mai, Thailand
بواسطة: Nakorn Tippayawong, وآخرون
منشور في: (2018)